Selasa, 03 November 2009

Gerak Lurus Beraturan (GLB)

Gerak lurus beraturan diartikan sebagai gerakan pada lintasan lurus dengan kecepatan tetap/konstan. Kecepatan tetap berarti percepatan nol. Dengan kata lain benda yang bergerak lurus beraturan tidak memiliki percepatan. Dalam kehidupan sehari-hari sangat jarang ditemukan benda-benda yang bergerak pada lintasan lurus dengan kecepatan tetap.

Karena pada Gerak Lurus Beraturan (GLB) kecepatan gerak suatu benda tetap, maka kecepatan rata-rata sama dengan kecepatan atau kelajuan sesaat. kok bisa ya ? ingat bahwa setiap saat kecepatan gerak benda tetap, baik kecepatan awal mapun kecepatan akhir. Karena kecepatan benda sama setiap saat, maka kecepatan awal juga sama dengan kecepatan akhir. Dengan demikian kecepatan rata-rata benda juga sama dengan kecepatan sesaat. Dah ngerti khan ?

GRAFIK GERAK LURUS BERATURAN (GLB)

Grafik sangat membantu kita dalam menafsirkan suatu hal dengan mudah dan cepat. Untuk memudahkan kita menemukan hubungan antara Kecepatan, perpindahan dan waktu tempuh maka akan sangat membantu jika digambarkan grafik hubungan ketiga komponen tersebut.

Grafik Kecepatan terhadap Waktu (v-t)

Berdasarkan grafik di atas, tampak bahwa kecepatan bernilai tetap pada tiap satuan waktu. Kecepatan tetap ditandai oleh garis lurus, berawal dari t = 0 hingga t akhir.

Contoh : perhatikan grafik kecepatan terhadap waktu (v-t) di bawah ini

Kecepatan gerak benda pada grafik di atas adalah 3 m/s. 1, 2, 3 dstnya adalah waktu tempuh (satuannya detik). Amati bahwa walaupun waktu berubah dari 1 detik sampai 5, kecepatan benda selalu sama (ditandai oleh garis lurus).

Bagaimana kita mengetahui perpindahan benda melalui grafik di atas ? luas daerah yang diarsir pada grafik di atas sama dengan perpindahan benda. Jadi, untuk mengetahui besarnya perpindahan, hitung saja luas daerah yang diarsir. Tentu saja satuan perpindahan adalah satuan panjang, bukan satuan luas.

Dari grafik di atas, v = 5 m/s, sedangkan t = 3 s. Dengan demikian, jarak yang ditempuh benda = (5 m/s x 3 s) = 15 m. Cara lain menghitung jarak tempuh adalah dengan menggunakan persamaan GLB. s = v t = 5 m/s x 3 s = 15 m.

Persamaan GLB yang kita gunakan untuk menghitung jarak atau perpindahan di atas berlaku jika gerak benda memenuhi grafik tersebut. Pada grafik terlihat bahwa pada saat t = 0 s, maka v = 0. Artinya, pada mulanya benda diam, baru kemudian bergerak dengan kecepatan 5 m/s. Padahal dapat saja terjadi bahwa saat awal kita amati benda sudah dalam keadaan bergerak, sehingga benda telah memiliki posisi awal s0. Untuk itu lebih memahami hal ini, pelajari grafik di bawah ini.

Grafik Kedudukan terhadap Waktu (x-t)

Grafik kedudukan terhadap waktu, di mana kedudukan awal x0 berhimpit dengan titik acuan nol.

Makna grafik di atas adalah bahwa nilai kecepatan selalu tetap pada setiap titik lintasan (diwakili oleh titik-titik sepanjang garis x pada sumbu y) dan setiap satuan waktu (diwakili setiap titik sepanjang t pada sumbu x). Anda jangan bingung dengan kemiringan garis yang mewakili kecepatan. Makin besar nilai x, makin besar juga nilai t sehingga hasil perbandingan x dan y (kecepatan) selalu sama.

Contoh : Perhatikan contoh Grafik Kedudukan terhadap Waktu (x-t) di bawah ini

Bagaimanakah cara membaca grafik ini ?

Pada saat t = 0 s, jarak yang ditempuh oleh benda x = 0, pada saat t = 1 s, jarak yang ditempuh oleh benda = 2 m, pada saat t = 2 s jarak yang ditempuh oleh benda = 4 m, pada saat t = 3 s, jarak yang ditempuh oleh benda = 6 s dan seterusnya. Berdasarkan hal ini dapat kita simpulkan bahwa gerak benda yang diwakili oleh grafik x- t di atas, bergerak dengan kecepatan tetap 2 m/s (Ingat, kecepatan adalah jarak dibagi waktu).

Grafik kedudukan terhadap waktu, di mana kedudukan awal x0 tidak berhimpit dengan titik acuan nol.

Persamaan yang kita turunkan di atas menjelaskan hubungan antara kedudukan suatu benda terhadap fungsi waktu, di mana kedudukan awal benda tidak berada pada titik acuan nol. Kecepatan benda diawali dari kedudukan di x0 sehingga besar x0 harus ditambahkan dalam perhitungan. Pada grafik di atas xo = 0.


Latihan soal

Kereta api Ladoya bergerak lurus beraturan pada rel lurus yogya-bandung sejauh 5 km dalam selang waktu 5 menit. (a) Hitunglah kecepatan kereta (b) berapa lama kereta itu menempuh jarak 50 km ?

Panduan Jawaban :

(a) Pada soal di atas, diketahui perpindahan (s) = 5 km dan waktu tempuh (t) = 4 menit. Sebelum menghitung kecepatan, kita harus mengkonversi satuan sehingga sesuai dengan Sistem Internasional (SI). Terserah anda, mana yang ingin dikonversi, ubah menit ke jam atau km di ubah ke meter dan menit di ubah ke detik.

Misalnya yang di ubah adalah satuan menit, maka 4 menit = 0,07 jam.

Ingat bahwa pada GLB, kecepatan benda sama setiap saat, demikian juga dengan kecepatan rata-rata.

v = s / t = 5 km / 0,07 jam = 75 km/jam

(b) Untuk menghitung waktu, persamaan kecepatan di atas dibalik

t = s / v = 50 km / 75 km/jam = 0,67 jam = 40 menit.

Gerak Lurus Berubah Beraturan (GLBB)

Gerak Lurus Berubah Beraturan (GLBB) diartikan sebagai gerak benda dalam lintasan lurus dengan percepatan tetap. Yang dimaksudkan dengan percepatan tetap adalah perubahan kecepatan gerak benda yang berlangsung secara tetap dari waktu ke waktu. Mula-mula dari keadaan diam, benda mulai bergerak, semakin lama semakin cepat dan kecepatan gerak benda tersebut berubah secara teratur. Perubahan kecepatan bisa berarti tejadi pertambahan kecepatan atau pengurangan kecepatan. Pengurangan kecepatan terjadi apabila benda akan berhenti. dalam hal ini benda mengalami perlambatan tetap. Pada pembahasan ini kita tidak menggunakan istilah perlambatan untuk benda yang mengalami pengurangan kecepatan secara teratur. Kita tetap menamakannya percepatan, hanya nilainya negatif. Jadi perlambatan sama dengan percepatan yang bernilai negatif.

Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan tetap. Beda lho….).

Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)

Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….

Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….

Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.

Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.

Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan/rumus percepatan rata-rata, di mana

t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0 benda belum bergerak maka kita bisa mengatakan t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi :

Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi

ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Jangan dihafal, pahami saja cara penurunannya dan rajin latihan soal biar semakin diingat….

Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.

Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rata

Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir;

Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :

Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan II dapat ditulis menjadi

Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui.

Sekarang kita subtitusikan persamaan ini dengan nilai t pada persamaan c

Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :

Persamaan di atas tidak berlaku jika percepatan tidak konstan/tetap. Ingat bahwa x menyatakan posisi/kedudukan, bukan jarak dan ( x – x0 ) adalah perpindahan (s)

Latihan Soal

  1. Sebuah mobil sedang bergerak dengan kecepatan 20 m/s ke utara mengalami percepatan tetap 4 m/s2 selama 2,5 sekon. Tentukan kecepatan akhirnya

Panduan jawaban :

Pada soal, yang diketahui adalah kecepatan awal (v0) = 20 m/s, percepatan (a) = 4 m/s dan waktu tempuh (t) = 2,5 sekon. Karena yang diketahui adalah kecepatan awal, percepatan dan waktu tempuh dan yang ditanyakan adalah kecepatan akhir, maka kita menggunakan persamaan/rumus

  1. Sebuah pesawat terbang mulai bergerak dan dipercepat oleh mesinnya 2 m/s2 selama 30,0 s sebelum tinggal landas. Berapa panjang lintasan yang dilalui pesawat selama itu ?

Panduan Jawaban

Yang diketahui adalah percepatan (a) = 2 m/s2 dan waktu tempuh 30,0 s. wah gawat, yang diketahui Cuma dua…. Bingung, tolooooooooooooooooong dong ding dong… pake rumus yang mana, PAKE RUMUS GAWAT DARURAT. He2……

Santai saja. Kalau ada soal seperti itu, kamu harus pake logika juga. Ada satu hal yang tersembunyi, yaitu kecepatan awal (v0). Sebelum bergerak, pesawat itu pasti diam. Berarti v0 = 0.

Yang ditanyakan pada soal itu adalah panjang lintasan yang dilalui pesawat. Tulis dulu persamaannya (hal ini membantu kita untuk mengecek apa saja yang dibutuhkan untuk menyelesaikan soal tersebut)

Pada soal di atas, S0 = 0, karena pesawat bergerak dari titik acuan nol. Karena semua telah diketahui maka kita langsung menghitung panjang lintasan yang ditempuh pesawat

Ternyata, panjang lintasan yang ditempuh pesawat adalah 900 m.

  1. sebuah mobil bergerak pada lintasan lurus dengan kecepatan 60 km/jam. karena ada rintangan, sopir menginjak pedal rem sehingga mobil mendapat perlambatan (percepatan yang nilainya negatif) 8 m/s2. berapa jarak yang masih ditempuh mobil setelah pengereman dilakukan ?

Panduan jawaban

Untuk menyelesaikan soal ini dibutuhkan ketelitian dan logika. Perhatikan bahwa yang ditanyakan adalah jarak yang masih ditempuh setelah pengereman dilakukan. Ini berarti setelah pengereman, mobil tersebut berhenti. dengan demikian kecepatan akhir mobil (vt) = 0. karena kita menghitung jarak setelah pengereman, maka kecepatan awal (v0) mobil = 60 km/jam (dikonversi terlebih dahulu menjadi m/s, 60 km/jam = 16,67 m/s ). perlambatan (percepatan yang bernilai negatif) yang dialami mobil = -8 m/s2. karena yang diketahui adalah vt, vo dan a, sedangkan yang ditanyakan adalah s (t tidak diketahui), maka kita menggunakan persamaan

Dengan demikian, jarak yang masih ditempuh mobil setelah pengereman hingga berhenti = 17,36 meter (yang ditanyakan adalah jarak(besaran skalar))

GRAFIK GLBB

Grafik percepatan terhadap waktu

Gerak lurus berubah beraturan adalah gerak lurus dengan percepatan tetap. Oleh karena itu, grafik percepatan terhadap waktu (a-t) berbentuk garis lurus horisontal, yang sejajar dengan sumbuh t. lihat grafik a – t di bawah

Grafik kecepatan terhadap waktu (v-t) untuk Percepatan Positif

Grafik kecepatan terhadap waktu (v-t), dapat dikelompokkan menjadi dua bagian. Pertama, grafiknya berbentuk garis lurus miring ke atas melalui titik acuan O(0,0), seperti pada gambar di bawah ini. Grafik ini berlaku apabila kecepatan awal (v0) = 0, atau dengan kata lain benda bergerak dari keadaan diam.

Kedua, jika kecepatan awal (v0) tidak nol, grafik v-t tetap berbentuk garis lurus miring ke atas, tetapi untuk t = 0, grafik dimulai dari v0. lihat gambar di bawah

Nilai apa yang diwakili oleh garis miring pada grafik tersebut ?

Pada pelajaran matematika SMP, kita sudah belajar mengenai grafik seperti ini. Persamaan matematis y = mx + n menghasilkan grafik y terhadap x ( y sumbu tegak dan x sumbu datar) seperti pada gambar di bawah.

Kemiringan grafik (gradien) yaitu tangen sudut terhadap sumbu x positif sama dengan nilai m dalam persamaan y = n + m x.

Persamaan y = n + mx mirip dengan persamaan kecepatan GLBB v = v0 + at. Berdasarkan kemiripan ini, jika kemiringan grafik y – x sama dengan m, maka kita dapat mengatakan bahwa kemiringan grafik v-t sama dengan a.

Jadi kemiringan pada grafik kecepatan terhadap waktu (v-t) menyatakan nilai percepatan (a).

Grafik kecepatan terhadap waktu (v-t) untuk Perlambatan (Percepatan Negatif)

perlambatan atau percepatan negatif menyebabkan berkurangnya kecepatan. Contoh grafik kecepatan terhadap waktu (v-t) untuk percepatan negatif dapat anda lihat pada gambar di bawah ini.

Grafik Kedudukan Terhadap Waktu (x-t)

Persamaan kedudukan suatu benda pada GLBB telah kita turunkan pada awal pokok bahasan ini, yakni

Kedudukan (x) merupakan fungsi kuadrat dalam t. dengan demikian, grafik x – t berbentuk parabola. Untuk nilai percepatan positif (a > 0), grafik x – t berbentuk parabola terbuka ke atas, sebagaimana tampak pada gambar di bawah ini.

Apabila percepatan bernilai negatif (a <>

HUKUM KEPLER

HUKUM KEPLER

Karya Kepler sebagian dihasilkan dari data-data hasil pengamatan yang dikumpulkan Ticho Brahe mengenai posisi planet-planet dalam geraknya di luar angkasa. Hukum ini telah dicetuskan Kepler setengah abad sebelum Newton mengajukan ketiga Hukum-nya tentang gerak dan hukum gravitasi universal. Di antara hasil karya Kepler, terdapat tiga penemuan yang sekarang kita kenal sebagai Hukum Kepler mengenai gerak planet.

Hukum I Kepler

Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya.

Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, Newton menemukan bahwa ternyata hukum-hukum Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.

Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya).

F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangkan titik terjauh adalah aphelion.

Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.

Contoh soal Hukum I Kepler :

Komet Halley bergerak sepanjang orbit elips mengitari matahari. Pada perihelion, komet Halley berjarak 8,75 x107 km dari matahari, sedangkan pada aphelion berjarak 5,26 x 109 km dari matahari. Berapakah eksentrisitas dari orbit komet halley

Panduan jawaban :

Panjang sumbu utama sama dengan total jarak komet ke matahari ketika komet berada di perihelion dan aphelion.

Panjang sumbu utama adalah 2a, dengan demikian :

Pada Perihelion, jarak komet Halley dengan matahari diperoleh dari (sambil perhatikan gambar di atas) :

a – ea = a(1-e)

Jarak komet Halley dengan matahari ketika komet Halley berada pada perihelion adalah 8,75 x107 km. Dengan demikian, eksentrisitas komet Halley adalah :

Nilai eksentrisitas komet halley mendekati 1. Ini menunjukkan bahwa orbit halley sangat panjang….

Hukum II Kepler

Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.

Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.


Hukum III Kepler

Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.

Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka

Newton menunjukkan bahwa Hukum III Kepler juga bisa diturunkan secara matematis dari Hukum Gravitasi Universal dan Hukum Newton tentang gerak dan gerak melingkar. Sekarang mari kita tinjau Hukum III Kepler menggunakan pendekatan Newton.

Terlebih dahulu kita tinjau kasus khusus orbit lingkaran, yang merupakan kasus khusus dari orbit elips. Semoga dirimu belum melupakan Hukum Newton dan pelajaran Gerak Melingkar…

Sekarang kita masukan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :

m1 adalah massa planet, mM adalah massa matahari, r1 adalah jarak rata-rata planet dari matahari, v1 merupakan laju rata-rata planet pada orbitnya.

Waktu yang diperlukan sebuah planet untuk menyelesaikan satu orbit adalah T1, di mana jarak tempuhnya sama dengan keliling lingkaran, 2 phi r1. Dengan demikian, besar v1 adalah :

Misalnya persamaan 1 kita turunkan untuk planet venus (planet 1). Penurunan persamaan yang sama dapat digunakan untuk planet bumi (planet kedua).

T2 dan r2 adalah periode dan jari-jari orbit planet kedua. Sekarang coba anda perhatikan persamaan 1 dan persamaan 2. Perhatikan bahwa ruas kanan kedua persamaan memiliki nilai yang sama. Dengan demikian, jika kedua persamaan ini digabungkan, akan kita peroleh :

Persamaan ini adalah Hukum III Kepler… :)

Kita juga bisa menurunkan persamaaan untuk menghitung besarnya periode gerak planet (T) dengan cara lain. Pertama terlebih dahulu kita turunkan untuk kasus gerak melingkar.

Sebelumnya kita telah mensubtitusikan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :

Pada pembahasan mengenai gerak melingkar beraturan, kita mempelajari bahwa laju v adalah perbandingan jarak tempuh dalam satu kali putaran (2phir) dengan periode (waktu yang dibutuhkan untuk melakukan satu kali putaran), yang secara matematis dirumuskan sebagai berikut :

Pada persamaan ini tampak bahwa periode dalam orbit lingkaran sebanding dengan pangkat 3/2 dari jari-jari orbit. Newton menunjukkan bahwa hubungan ini juga berlaku untuk orbit elips, di mana jari-jari orbit lingkaran (r) diganti dengan setengah sumbu utama a

Dibaca secara perlahan-lahan sambil direnungkan ;)

DATA ASTRONOMI